1. 정의 데이터가 사상 된 공간에서 여백(Margin)을 최대화하고 일반화 능력을 극대화하여 결정 직선을 찾는 두 범주를 갖는 객체들을 분류(이진 분류, Binary classification) 하는 알고리즘 데이터 사상공간 경계선과 최근접 데이터(Support Vector)간 최대거리 경계 식별 알고리즘(MMH :Miximum Margin Hyperplane, 초평면) 활용 : 패턴 인식, 자료 분석을 위한 지도 학습 모델이며, 주로 분류와 회귀 분석 비확률적 이진 선형 분류 모델 생성, 지지도 이용, 벡터 이용, 기계학습 2. 구성도 및 구성요소 가. 구성도 나. 구성요소 - 서마초커 - 주어진 많은 데이터들을 가능한 멀리 두 개의 집단으로 분리시키는 최적의 초평면(hyperplane)을 Train..